Highly integrated master containing 28 microfluidic device templates for RT-DC chip fabrication.

Microfabrication is a combination of processes and techniques used to construct physical objects with typical sizes ranging from hundreds of microns to hundreds of nanometers. This technology takes advantage of established semiconductor fabrication processes, used to make integrated circuits, and, over the past two decades, has been used for the fabrication of tools with applications in biology, medicine and biomedical engineering.

Hybrid PDMS-on-glass microfluidic device.

In their native physiological environment cells constantly encounter and respond to a multitude of signals, such as growth factor and cytokine stimulation, cell-cell signaling, interaction with the extracellular matrix (ECM) and physical inputs like stiffness, topography and shear stress. A key challenge in cell biology is the design of experimental methods and specific assays to disentangle the contribution of these cell-governing parameters. Conventional cell culture supports, such as tissue culture flasks and Petri dishes, represent just a trivial approximation of the complex microenvironment that cells reside in. Recent technological developments in material science and microfabrication allow to better mimic this complexity and control over a wider range of environmental parameters.

Microfluidic droplet generator for hydrogel bead production.

These technologies can be employed not only for the control of the chemical and physical properties of a free surface but also for the development of microfluidic devices allowing the control of liquid flow in channels with typical sizes ranging from 1 micron up to millimeters. Microfluidics is particularly intriguing for stem cell analysis, since at the moment it is the only technology capable of providing spatial and temporal control over cell growth and stimuli by combining surfaces that mimic complex biochemistries and geometries of the ECM with microfluidic channels that regulate the transport of fluids and soluble factors, allowing researchers to modulate pluripotent stem cell renewal and differentiation through biochemical and mechanical stimulation.

The potential of microfluidic systems lies also in the physics of the microscale. By understanding and leveraging microscale phenomena, microfluidics can be used to perform techniques and experiments not possible on the macroscale, allowing new functionality and experimental paradigms to emerge.

We collaborate with the MSF to develop microfluidic devices, microstructured surfaces, and hydrogel micro-beads. The microstructure facility (MSF) of the Center for Molecular and Cellular Bioengineering (CMCB) provides cutting edge technologies for the micro-structuring of organic/inorganic materials and the fabrication of polymeric devices and offers a full set of skills and capabilities in material science, photolithography, soft lithography, polymer microstructuring, thin film deposition and microfluidics. For more info about services, instruments and technologies developed within the MSF visit the MSF home page.